PRECISION JET PHYSICS IN ELECTRON-PROTON COLLISIONS

Christopher Lee LANL

Based on work with Daekyoung Kang and Iain Stewart PRD 88, 054004 (2013) [arXiv:1303.6952], arXiv:1404.6706, and work in progress

Town Meeting on QCD September 14, 2014

EVENT SHAPES IN DIS:

D. Kang, CL, Stewart (2013, 2014)

 "I-jettiness" (or thrust) in DIS probes final states with beam radiation + one additional jet

SCET factorization in small au region:

$$\frac{1}{\sigma_0} \frac{d\sigma(x, Q^2)}{d\tau_1^a} = H(Q^2, \mu) \int dt_J dt_B dk_S \delta \left(\tau_1^a - \frac{t_J}{Q^2} - \frac{t_B}{Q^2} - \frac{k_S}{Q}\right)$$
$$\times J_q(t_J, \mu) B_q(t_B, x, \mu) S(k_S, \mu)$$

- Averages over ISR transverse momentum
- Resummation to NNLL and N³LL
 Z. Kang, Liu, Mantry, Qiu (2013); D. Kang, CL, Stewart (2013, 2014)
- Computed fixed-order $\mathcal{O}(\alpha_s)$ numerically Z. Kang, Liu, Mantry, Qiu (2013)

same as "DIS thrust"

Antonelli, Dasgupta, Salam (1999)

(can be measured solely from "current" hemisphere \mathcal{H}_J)

$$\frac{1}{\sigma_0} \frac{d\sigma(x, Q^2)}{d\tau_1^b} = H(Q^2, \mu) \int d^2p_{\perp} dt_J dt_B dk_S \delta\left(\tau_1^b - \frac{t_J}{Q^2} - \frac{t_B}{Q^2} - \frac{k_S}{Q}\right) \times J_q(t_J - \mathbf{p}_{\perp}^2, \mu) \mathcal{B}_q(t_B, x, \mathbf{p}_{\perp}^2, \mu) S(k_S, \mu)$$

- Sensitive to ISR transverse momentum
- Resummation to NNLL (& appx. N³LL)

 D. Kang, CL, Stewart (2013, 2014)
- Computed fixed-order $\mathcal{O}(\alpha_s)$ analytically D. Kang, CL, Stewart (2014)

PERTURBATIVE AND NONPERTURBATIVE EFFECTS

D. Kang, CL, I. Stewart (2014)

 N^3LL $x=0.2 \ O=50 \ GeV$ $\delta \alpha_s = 5\%$ 10 $\delta \alpha_s = 2\%$ $\delta(\mathrm{d}\hat{\sigma}/\mathrm{d}\tau_1)$ [%] -5-10-151000.25 0.30 0.05 0.10 0.15 0.20 au_1

N³LL resummed PT prediction at EIC highest resummed accuracy for DIS event shapes, previously NLL

Sensitivity to strong coupling from one distribution at fixed x, Q; expect improvement from multiple x, Q: <1% level precision

NP shape function convolved with NLO PT at JLab12

Shape function should be independent of x, Q; better measured at low Q

For large enough Q, leading NP effect in the PT distribution tail is a universal shift

Using factorization theorems and boost invariance properties of soft Wilson lines, can prove that:

$$\Omega_1^{\mathrm{a}} = \Omega_1^{\mathrm{b}} = \Omega_1^{\mathrm{c}}$$

("c" = hemisphere thrust in CM frame)

D. Kang, CL, I. Stewart (2013)

Same Ω_1 even appears as leading soft NP correction to jet mass at LHC!

